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The suggestion for using such a scheme was first given by Kelley
[alzwho used performance index-to-go as the index variable. He called this
a ''transversal comparison' scheme. Time-to-go has the advantage that it
1lways decreases monotonically whereas this 1s not always true of perf -mar
index-to-go. A monotonically changing index variable must be used if the
transversal comparisons are to be made over the entire flight., The trans-
versal comparison is used here in an iterative scheme to predict the time
to-go. Kelley's suggestion is also extended to include non-stationary

systems and in-flight changes in the terminal constraints,
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ABSTRACT

A modification of the perturbation feedback control scheme of Refs. [1],
[2], and [3] is presented that greatly increases its capability to handle dis-
turbances in cases where the final time is not specified. The modified control
scheme uses a set of precalculated gains which allows in-flight estimation of
the change in the final time due to perturbations from a nominal path. The
time-to-go, determined from the predicted change in final time, is used to
enter tables of precalculated feedback control gains.

This modified guidance scheme is applied to a re-entry glider entering
the atmosphere of the Earth at supercircular velocities. Beginning at the
bottom of the pull-up maneuver (nominal altitude 188,000 ft., nominal velocity
33,000 ft./sec.—l) the glider is guided to a terminal altitude of 220,000 ft.
and zero (0) flight path angle with maximum terminal velocity. For initial
altitudes between 167,000 and 216,000 ft. the terminal error in altitude is
less than two feet; for initial velocities between 23,000 ft./sec. and 43,000
ft./sec. the terminal altitude error is less than 13 ft. In addition, the

terminal velocity is very close to optimal for these initial conditionms.

t This work was partially supported by the Space and Information Systems

Division of the Raytheon Company.
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1. INTRODUCTION

Among the many feedback control schemes valid for small perturbations
about a nominal path is the neighboring optimum control scheme [1], [21.
This scheme generates a path neighboring to a nominal optimal path which
minimizes the performance index to second order while meeting the terminal
constraints. The control perturbation from the nominal control is a linear
combination of the state variable perturbations weighted by a precalculated
set of gains. The gains are determined by solving what is called the
"accessory minimum problem'" in the calculus of variations. Where more than
one terminal condition is specified, some of the gains become infinite at
the nominal terminal time.

The precalculated gains are conveniently stored as a function of
time. Due to unforeseen disturbances, the system may not pass through the
nominal initial state at the nominal initial time. The optimal path from
this neighboring initial state may very well intersect the terminal manifold
at a time later than the nominal terminal time; if clock time is used to
enter the gain tables, the gains would become unbounded before reaching the
terminal manifold. This difficulty is avoided if the gain tables are entered
at an "index time'" determined, so that the time-to-go on the neighboring

path is the same as the time-to-go for the nominal path, i.e.,

N

(t:f -t) = (tf - tI) = time-to-go Q)
where tf is the estimated terminal time of the neighboring path, t? is
the terminal time of the nominal path, t is the clock time and tI is

the index time. As the time-to-go goes to zero the gains go to infinity



at the terminal time of the neighboring path. The time-to-go can be esti-

mated from inflight conditions by using (1) as

t, -t. = t-¢t_ ., (2)

The change in the final time, tf - t?, can be calculated in terms of the

deviation in the state variables from their nominal values using an additional
set of precalculated gains (see e.g., Ref. 2). This additional set of gains,
while adding some complexity, allows the control scheme to meet the terminal
constraints and achieve the minimum value of the performance index with much

greater perturbations from the nominal state.

2. GENERAL DESCRIPTION OF CONTROL SCHEME

The system to be controlled is described by a set of first-order non-

linear differential equations
[ ]
x = f(x,u,t) (3)

where x 1s a column vector of n state variables, f 1is a column vector
of n known functions, u is a control vector of m control variables, t
is the independent variable time and (") = d( )/de.

Control programs, uN(t), and associated state variable programs,
xN(t), are precalculated to produce a path starting from a given initial

point x(to) that minimizes a performance index
J = ¢[x(tf), tf] (4)

while satisfying terminal constants




Ve, t] = 0 (5)

where ¢ 1s a column vector of q known functions (q < n-1), and te
is the (unspecified) terminal value of the independent variable.

For small variations in the state from the nominal state, a control
program can be found which generates an optimum path neighboring to the
nominal path. The required control perturbations, as shown in Refs. [l] ‘

and [2], may be obtained by multiplying the state deviations by a precal-

culated gain matrix, A(t):
u(t) - uh (@) = -Ae) [x(e) - (e)] . (6)

To meet the constraints (5), some elements of the gain matrix, A(t), may
become infinite at the terminal time, If the neighboring path reaches the
terminal manifold later than the nominal path, the control variation of (6)
becomes undefined.

To avoid this difficulty it is suggested that the gain tables be
entered at an index time determined so that the time-to-go on the nominal
path is the same as the time-to-go on the neighboring path as expressed in
(1). The inflight estimate of the change in the termiral time (2) is found
in terms of the deviations in the state variables from the nominal values.

weighted by a set of precalculated gains, K(t),(see Section 3 or Ref. [2]), as

e -t = t-t = K@@ -D@W] . M
£ f 1
Since K(t), as well as A(t), are calculated along the nominal, te - t?

is undefined for values of t greater than tN

PE However, instead of (7) an



implicit equation for the index time is found by using the first-order approx-

imation
k@) - N©)] = [k - K @€)] - @)[e -] @)

in (7) to obtain

N
K(t,) [x() - x (t)]
t-t = L o I (9)
1+ K(tI)x (tI)

If t and the current state vector, x(t), are known, the index time can
be determined rapidly by successive substitutions into (9), using tables of
+N N
K(tI)/[l +K(ex (t)] and x (t)).
Using Eqs. (6), (8), and uN(t) = uN(tI) + GN(tI)(t-tI), the control
u(t) may be expressed in terms of uN(tI), xN(tI), t. and feedback control

I
gains, A(tI):

ue) = (e - A [x(e) - 1]
+ (e + Mep]fe - &) (10)

Note, x(t) 1s the current estimate of the state vector and t 1s the

clock time. If the system being controlled is stationary, that is, if the

equations of motion and the boundary conditions are not explicitly dependent

on time, it will be shown that
[ + A= ] = o v

Thus the control for a neighboring path for the stationary case is independent

of the time variation t - tI:

u(e) = u(e) - A [x(0) - 2] (12)




In the following section A(t) and K(t) are found by solving the
accessory minimum problem in the calculus of variations. The iterative

procedure for finding t. will be eliminated by developing a gain associated

I
with (t-tI). Also the gain matrix associated with (t—tI) in (10) is
calculated through numerical integration. The need for numerical differen-

tiation to find GN(t) is eliminated.

3. THE ACCESSORY MINIMUM PROBLEM

The feedback gains used to estimate small changes in the control
variable and final time are found by solving the accessory minimum problem
(see e.g., Ref. [2] or [5]). About a stationary path (a path satisfying
first-order nccessary conditions) the performance index expanded to second
order is minimized subject to linear dynamics. The state space for this
accessory problem is composed of the deviations in the state variables
awav from the nominal values.

The augmented performance index for the general problem stated in

the last section is defined as

t

- f .
J = ¢ + J [H(x,u,x,t) -xTx]dt (13)
t
(o]
where
o = ¢[x(tp), t] + va[x(tf), td (14)
B o= ATE[x(t),u,t] (15)

Here, A and v are vector Lagrange multipliers associated with (3), and



(5), respectively. The initial and final times are to and tf.

Euler-Lagrange necessary conditions are

The terminal conditions are
A(tf) - o,

Q-H+¢t=0

where ( )x means d( )/3x.

The

(16)

17>

(18)

(19)

In the accessory minimum problem, du(t) is to be determined which

minimizes the second-order expansion of the augmented performance index (13)

S R m||éx

t
f H
24 1 T, T 1 T XX
d°J = 2 [Gx,dv,dtf] R Q njfdv +3 J [«Sxét?_l .
T T t ux
m n a dtf o
t-tf
subject to

6x = £ 6% + £ bu

éx(to) specified

dy = y 6x + &dtf where dy 1is specified
where the deviation in any variable Q 1s defined as

5 = Qt) - QV(e)

(21)

(22)

(23)

(24)

(20)




The weighting matrix in (20) is

¥ 1 - d
S R m ° o 3. [o -0 £ ]
T d (25)
R Q n - ¢vx vi dtf [bv]
T T d d d d
m n v} - ¢ -— ¢ — |=— ¢
mt L[dtf ] [dt:f ] dtf [dtf ]
f x v J

Note that this matrix is symmetric.

First-order necessary conditions for the accessory minimum problem

may be developed as follows. Define the variational Hamiltonian for this

accessory problem as

Hxx qu 6x
1 T T T
s = 5 (fox,6u] + 61" [£ ox + £ _6u] (26)
H H Su
ux uu
the necessary conditions are
6x = (AH)GA (27)
gy = -(AH)Gx (28)
0 = (AH)Gu (29)

From (29) the perturbed control is given in terms of 6x and ) as
-1
su = -H_ [H 6&x+H, 8] (30)

where Huu is assumed to be non-singular.

In order to develop a feedback law from (30) and predict the change



in terminal time from present state deviations, a linear relation among

the variables 6x, dv, dtf, §x, dy

presented here as

C8A (t)]

dy

dQ

5 (t)
R (t)

m (t)

T

and d, developed in Ref. [2], is

R(t)

Q(t)

nT(t)

m(t)]

n(t)

—éx(t)-

dv

a(t)]

[ae,

(31)

The elements of the coefficient matrix of (31) are called 'sweep' variables

and are determined by a symmetric but non-linear differential equation

(developed in Ref. [2]):

S R m I S
-C A
2 & o af = |F R
t q -A B
T T T T
m n a 0 m
1
where
A = f -fHH
U uu ux
-1
B = HfT
Uy uu u
C = H =-H u iy
XX XU uu ux

The boundary conditions are given by (25).

4, PROPERTIES OF SWEEP VARIABLES

1 0 0,
no9 (32)
S R m

(33)
(34)

(35)

The differential equations of (32) are integrated backwards from




the terminal manifold, stopping at the initial time. If there are no
conjugate points (5 ¥ ) and the path is normal (6 < 0 for a minimum)
as defined in Ref. [5], then (30) can be manipulated into the form (on

an optimal path Q = 0 =» dQ = 0)

sa(e)] § )
T . Sx(t) .
dv = IR Q (36)
dy
de, al  af
where

§ - 5-2- £g~ 18T (37)
R nnT -1
Q = (Q - (38)
a mnT
R = —(R -'j;—)Q (39)
m = -R % - % (40)
ao= Q7 (41)

It should be noted that these new variables, ('), still satisfy (32). This
transformation is desirable in order that the perturbed control of (30) be
written as a feedback law operating on the deviations of the state variables.
When integtating (32), this transformation must be taken in a time interval
which lies some time before the terminal boundary (corresponding to Q close
to zero) and some time after a ﬁonjugate point defined for an arc with no
terminal constraints on the state space but with fixed terminal time (this
corresponds to S becoming unbounded). For the atmospheric re-entry guidance
problem to be given in Section 7, S does go to <« although § remains

bounded (also see Appendix C).



5. FEEDBACK GAINS

The feedback gains K(t) and A (t) can now be identified with
the sweep variables. From (36) the general form for predicting the change

in the terminal time is

de, = al(t)sx(t) + hldy (42)

where ﬁT = K(t). This form has the additional flexibility of allowing
small changes in the terminal constraints.

Instead of developing the implicit equation as (9) let us suppose
that some estimate of t-t;. was made, If the system has undergone a pertur-

bation then (2) does not hold but differs by some error, ¢, as
(:-tI)NEw = (t-t) +e . (43)

If (43) is introduced into (42) along with (8) and (t - tI)NEw- dtf an explicit

equation can be obtained for calculating €:
e = @ (epx(® - x(t)] - L) (et + a’ (t )dy (44)
where
~T N
Lty = 14w (e))f (t;) (45)

Note that in (44) second-order terms are neglected. Equations (43)-(45)
are used iteratively until ¢ & O, For the numerical problem to be discussed,
¢ was very small within two iterations.

The index time that results from this iterative procedure is used

- 10 -




to enter the gaiﬁ tables from which the perturbed control variable is cal-
culated. If the linear expression for &A(t) 1in (36) is substituted into

(30), the perturbed control is

Su = -A(t)dx(t) - R(t)dy (46)
where

Mo = Ho a0 + B (08©)] 7

Be) = HOL(0H, (DR(x) 48)

The control program on the neighboring path can be written as a function

of index time with the help of (8):
ue) = W) - A @ - 6] +rep fe-e] -sepaw (49
where
N *N
r(t) = A(e)DE (e +u () (50)

The control program also allows for variations in the terminal conditions.
Second-order terms in (49) are neglected.
For systems which are stationary the gains £ and r are zero. In

Appendix A the explicit dependence of these gains on time is demonstrated.

6. ANALYTIC EXAMPLE OF CONTROL SCHEME

The following example is chosen to illustrate some of the features

of the previous section for non-stationary problems. The problem is to reach

- 1] -



a parabolic boundary in x,t space so that a combination of terminal time
and integral squared velocity is minimized. This might be interpreted as

a one-dimensional pursuit problem in which the target has a constant accel-

eration.

The problem statement is: find the control variable, u, that minimizes
tf )
J = J (1+u7)dt (51)
0
with dynamical equations

X = u (52)

and the terminal boundary

w-xf+t§-l-0 (53)

The augmented performance index is
t

£
I = ¢+ J [ - ax]de (54)
0
where
)
¢ = v(tf+-2- te - 1) (53)
H = 1+ %-uz + Au - (56)

First-order necessary conditions are

A = u A(tf) =y (57)
H = 0 =& u = -) (58)
H+ ¢ = 0 (59)
t
t-tf

From (57), (58), and (59) the control variable as a function of terminal

- 12 -




time is
2 1/2
u = -[tf - (tf + 2) ] v (60)

Using the dynamic equation (52) the relation between the initial state
and terminal time is
b 2. . 1/2
X, = 1+tf7—(tf+2) ] (61)

Choosing X and solving for te the performance index can be evaluated

using (51) and (60) as
} 2 _ 2, o\1/2
J 2 + tf tf(tf + 2) (62)

The optimal paths for different initial conditions are plotted in
Fig. 1. Note that the control variable along each of these paths 1s different.
These paths terminate on the parabolic manifold in x,t space. Lines of
constant time-to-go (dashed lines) and constant performance index (dashed
dotted lines) are super-imposed on the trajectories. Suppose that the con-
trol scheme of the last section is applied to this problem. Consider that
the path emanating from x = .4, t =0 is ghe nominal path, Now at t =
.32 the state x = .3 is measured. If present time 1s used as the index
time, then the nominal value of the state would be xN = ,7, As t approaches
t = .5, the nominal path meeds the terminal manifold. From this point on,
the control on the neighboring path is not defined since no gains are cal-
culated beyond this point. However, if the index time is chosen so that
the time-to-go to the terminal.boundary for both the neighboring path and
nominal path are the same, the gain tables of the nominal are entered when
N

x = ,4 and t = 0. As time progresses, both paths reach the terminal

boundary together.

- 13 -



Note that if two paths start at the same position but at different
times the optimal controls for each resulting optimum path are not the same.
This difference in time between the present time and index time for non-
stationary problems must explicitly be included in the calculation of the
control deviation as given by (10).

The control gains for calculating the perturbed control and predicting
the error in the difference of the times-to-go are easily found from the

scheme of the last section and are given here as

N N N N, 2
u +t ut, + (t,)
, f N I £
e = x(e) - x (e)] + (t-t.) (63)
(e - W) I HNelee) - @ep? T
i N N, 2
N -u N ()
ut) ~u (t) = [x(e)-x" ()] + (t-t.) (64)
T [WMefeep - Meh? T W efep-aed?] T

7. NUMERICAL EXAMPLE:

GUIDANCE SCHEME FOR A RE-ENTRY GLIBER

The control scheme is applied here to the problem of guiding a lifting
re-entry vehicle at supercircular veldcities from the bottom of the pull-up
maneuver (nominal altitude 188,000 ft., nominal velocity 33,000 ft.sec.-l,
nominal flight path angle -0.1°) to an altitude of 220,000 ft. at zero flight
path angle while maximizing the terminal velocity.+ This minimizes the energy

loss at the terminal altitude. The nomenclature for this problem is given in

TThis starting point was chosen to save computer time., Usually control
begins at entry into the atmosphere (altitude = 400,000 ft.) as in Ref. [1]-
Note that from the entry point the performance index, velocity, is not
monotonically decreasing.

- 14 -




Fig. 2. The aerodynamic forces, lift and drag, are varied through the con-
trol variable, angle-of-attack a(t). The wing loading of the vehicle,
mgo/S, was taken as 61.3 1b.ft.-2. The 1956 ARDC standard atmosphere
model was used. The lift-drag characteristics of the vehicle are shown

in Fig. 3. The non-linear equations of motion of a point mass about a
spherical non-rotating Earth are given in Appendix B, The state variable
histories for the nominal optimal path are given in Fig. &4.

This problem is stationary and as such is independent of the start-
ing time. Therefore, the nominal may be thought of as shifted in time so
that the terminal time of the nominal is the s#me as that of the neighbor-
ing path. This again causes the time-to-go on both paths to be the same.
The gains for the continuous in-flight prediction of the error in time-to-

go is given by Kt, Ks, K; tablulated in Fig. 4 where

e = K (e V) (e ] + K:"‘I) )" e)] + K (e [ae)-n" ()]

The index time, tI’ is found so that e = 0 by the procedure of Sect. 5.

Once t_ 1is found the perturbed value of angle-of-attack is calculated

1
using the feedback gains Kg, Kz, K; tabulated in Fig. 4 as

a(e) - o) = e e - viep] + Kep - Nep]
+ ke e - n'ep)]

The first-order necessary conditions and coefficient matrices for the sweep
equations for this problem are given in Appendix B.
The feedback gains tabulated in Fig. 4 are seen to be positive at

the beginning of the flight and then go to negative values. This same

- 15 -
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behavior occurs in guiding a vehicle to a fixed point along the minimum
distance path on the surface of a sphere (see Appendix C). Positive feed-
back for the re-entry problem is required to maximize the velocity whereas
negative feedback is required to meet the terminal constraint. Near the
end of the flight the guidance scheme concentrates on meeting the terminal
constraints, whereas with time-to-go large, it concentrates on maximizing
terminai velocity.

The modified control scheme which uses time-to—go all along the path
is compared with the control scheme which uses present time as the index
time (this is the same control scheme used in Ref. ﬁJ). The control schemes
are tested by introducing variations first in the altitude and then in the
velocity. Figure 5 shows trajectories in altitude-velocity space generated
by the modified control scheme for initial altitudes between 176,000 ft.
and 216,000 ft. all with initial velocity = 33,100 ft.sec. ! and initial
Yy = -0.10? Plotted also on this chart are constant time-to-go curves. For
paths resulting from positive initial altitude perturbations, the estimated
time-to-go is shorter than the nominal time-to-go. Thus, the gains used
were larger negative values for this index time than they would have been
if nominal time-to-go had been used to enter the gain tables. For trajectories
initialized by h = 216,000 ft. the path reaches the terminal point in less
than half the nominal time. Prediction of the perturbed terminal time was
very good. The angle-of-attack programs for two paths with large initial
altitude variations are shown with the nominal a-program in Fig. 6. In
the altitude-velocity space of Fig. 7, a family of trajectories generated

by the modified control scheme are shown for initial velocities between

- 16 -




23,000 ft./sec. and 46,000 ft./sec.

The errors in final altitude when the flight path angle is zero
are shown in Fig. 8 for variations in initial altitude and in Fig. 9 for
variations in initial velocity. For the scheme based on clock timellarge
errors are incurred; for dh(to) = 16,000 ft., the terminal altitude error
is 1400 ft. (Fig. 7) and for Gv(to) = 6,000 ft./sec. the terminal altitude
error is 2400 ft. For the range of initial altitudes and velocities given
earlier for the modified scheme, Fig. 8 indicates the terminal altitude
error is less than 3 ft. and Fig. 9 also indicates small altitude errors
except for large initial variations in velocity such as 13,000 ft./sec.
where the error is 93 ft,

Not only does the modified scheme meet the terminal constraints on
y(tf) and h(tf) better but it also achieves greater terminal velocity.
A comparison in terminal velocity between the control scheme based on clock
time, the modified control scheme and the first-order approximation relating
changes in the terminal velocity to changes in the initial conditions (the
adjoint variable) is shown in Fig. 10 for variations in initial altitude
and in Fig. 11 for variations in initial velocity. The greatest improvement
made by the modified control is for éh(to) < 0 and Gv(to) < 0. It is
for these variations that the scheme based on clock time 'runs' out of
gains and uses the largest o available (+ 60 DEG). However, the modified
scheme does better in maximizing the velocity for all variations. Note
that the terminal velocity of the modified scheme lies very close to the

first-order approximation.

-17 -



8. COMMENTS ON EXTENSIONS OF THE NUMERICAL EXAMPLE

If the guidance scheme is initialized at entry into the atmosphere,
the velocity first increases and then decreases. This makes it impossible
to use velocity-to-go as an index variable as proposed in Ref. &4 . However,
in the region where velocity is monotonically decreasing the number of
gains can be reduced by one if velocity-to-go is used as the index variable
instead of time. The dynamics are velocity dependent; i.e., non-stationary
with respect to velocity. The gains £ and r of (45) and (50) are non-
zero and can be easily calculated from the now 2-vectors, m, f and A.

The gains r and ¢ would be also non-zero if the boundary conditions
were explicit functions of time. This would occur if the terminal positions

were constrained and the rotation of the Earth included.

9. CONCLUSIONS

The performance of the re-entry guidance scheme demonstrates that
using time-to-go as the index variable over the entire path increases greatly
the range of possible initial conditions while still meeting the terminal
conditions and achieving the maximum value of performance. The appropriate
gain to choose depends upon the estimated flight time to the terminal boundary,
not the clock time.

The range of initial conditions handled is so great that, in general,

only one reference nominal would have to be stored on an on-board computer

to guide a re-entry vehicle. Even further savings in storage may be gained

by storing only the coefficients of a polynomial fit to the reference path

- 18 -




and gains. For gains that have singularities at the terminal point it is

suggested the polynomial also have a singular term proportional to some

power of (tf-t)-l.
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Feedback Gains on (t-tI)

APPENDIX A

A geometrical interpretation of the sweep variables is given through

a Hamilton-Jacobl viewpoint as presented in Ref. [2]. An oﬁtimal return
function, V(x,t,y),
from x at time t <t

terminal constraints

f
¢y with Q = 0.

keeping Hu = 0 along the path and meeting

is defined as the value of J of (15) when starting

For small variations in x,y and Q

the sweep and adjoints variables can be interpreted in terms of the optimal

return function as

AT(e) =

S(t)
R(t)
Q(t)
m(t)
n(t)

a(t)

The partials are implied by the expansions of (36).

Vx(t)

Vx (£)x(t)

v

\Y

va(t)

v

v

yx (t)

by

Qp

19)

(A-1)

(A-2)

(A-3)

(a-4)

(A-5)

(A-6)

(A-7)

Using the above identifications the explicit dependence of the gain

r in (50) on time is illustrated.

r 1s given where ﬁN

Also an alternative scheme for calculating

need not be calculated by numerical differentiation

on the computer. The expression for A given by (47) in terms of the return

function is




-1 T
A= H [vxfux + £V ] (a-8)

From 3u = 0 the value of u along an optimal path is

& = -Hl[v.e

d
wu Vacfux® T Vyfue tae (Vx)fu] (A-9)

wvhere

d
ac (Vx) = Vxxf + th (A-10)
Note that the order of total and partial differentiation is important.
Introducing (A-8) and (A-9) into the expression for (50) gives
r = Ho[Ve +v f£] = w [V (a-11)
uu* x ut tx' u w"-x u‘t

If fou is not explicitly dependent upon time r = O and the neighboring
control program is stationary. Note that u of (A-9) is easily calculated

by using

d
dt (Vx) = Yt

(A-12)
XX

where V_  1is identified as the adjoint in (A-1).
The dependency of the gain £ on t is demonstrated directly once
§x = dx - fdt 1s used in (36). The change in the terminal time is then

related to a change in the present time as

dr, = nldx - mifdt + Aldy (4-13)

The term ﬁTf is seen to be —atf/at keeping x,y and Q constant. Then

£ defined by (45) is
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[ atf] ‘

L = -3t (A-14)
A stationary problem depends only on the time interval and not on a parti-
cular value. Thus if the problem is begun a time dt 1late, it will finish

a time dt late. That is atflat = 1 which in turn implies that & = 0

for stationary problems. To calculate £ 1in terms of partials of the return
function with respect to t, time may be regarded as a state variable and

the index time t. be the independent variable. Since the problem is not

I

explicitly dependent on the new variable tI’ the indexing variable t

is found by entering the gain tables so that the predicted value of the

change in the terminal value of tI is zero. This is equivalent to nulling e.

- 22 -




APPENDIX B

Equations Used in the Atmospheric Re-entry Problem

The equations of motion for a re-entry vehicle about a non-rotating

spherical Earth are
2

. Cov°s |
V= -——— -3 siny : (B-1)
C, pVS
VI v__ g -
2m T (R+h v) cosy (B-2)
h = Vv siny (B-3)

where V, y, h is the state vector and t = time is the independent variable.

The variational Hamiltonian is
2

CDpV S CLpVS
H= —Av > + g siny| + AY 2m +

+ 2, [V stay]

th - %) cos%] (B-4)

The Euler-Lagrange equations are

C.pVS C, oS
5 D B R O - % - -
Ay H, el S [ + ( + cos;]AY sinY ), (B-5)

2m R+h vz
X = - v __z - -
)‘Y HY g cosY Av + (R+h V) sinYy AY V cosy Ah (B-6)

: c.v3s
Y e H e |22 D 20 v 2
Ap = By [ 7er 810y + 50— Pt 7 = VR+n) | °8"
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The partials of the Hamiltonian needed to evaluate the matrices

c

of (33),

(34), and (35) are

vh

H
YY

Yh

Hon

Avg siny - A

28
Av (P+h) cos

A, B, and
')"
=4 cosy (B-8)
Y., 3
\
(B~9)

vD_ 3p , L~ 39p cosy _ 2g cosY| ,

=3
5]
@
o

®+h)%  vE(R+h)

v _z
v\ ®+h V)cosy - AhV siny

Yy + A -
Y((R+h)2 V(R+h)

2m

2
c.v's .2
D 9 p
-
v

+ cosy - —68—2
(R+h) V (R+h)
L, avs Lo . os L
v m 3o Yy 2m da
= 0
A VZS oC aC
N5 % VS 3p °L
2m  3h 3a Yy 2m 3h 3a
2 2
N v%s 2 Cp L, avs il
v 27 A 2m T2
da oo
o VZS oC
2m 3a
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(B-10)

(B-11)

(B-12)

(B~13)

(B-14)

(B-15)

(B-16)

(B-17)

(B-18)




ovs %L
2m Jo
0
) CDpVS \
m
C.pS
B A P S - B
m + R+h + vz) cosy fv
siny
/
-g cosy \
. _E
R+h v)““ >fy
V cosy
/
o VZS
D 3p , 2g siny
2m dh R+ h
C, Vs
52wt ) con
(R+h)
0
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(B-20)

(B-21)

(B-22)

(B-23)

(B-24)

(B-25)

(B-26)

(B-27)

(B-28)

(B~29)




APPENDIX C

Character of the Feedback Control Gains

The feedback control gains for the optimal guidance scheme of a
re-entry vehicle have positive values at the beginning of the flight and
become negative toward the end of the flight (see Fig. 4). The same behavior
is found for the control gains in guiding a vehicle along the shortest
path to a fixed point on a sphere (Ref. [5]). Spherical coordinates are
used as defined in Fig. 12, The element of distance, ds, on the surface

of the sphere is
ds = r[@e)? + cos®e(dg)?] /2 (Cc-1)

where r = radius of the sphere. The problem is to find u(4) to minimize

51
J = J [-_u2 + C0829]1/2d¢ (€-2)
)
where
do
dé v

60) =0 , 6(¢1) =0

The method of solution for this problem will be to solve the accessory minimum
problem using the Riccati equation approach given in the text. Here ¢ will
be the independent variable.

It is straight forward to show that u(¢) = 0 , a(¢) = O satisfies
the first-order necessary conditions. Let us consider neighboring paths

by expanding the performance inder (C-2) to second order as
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¢
1
525 & %-J [w? - 6%]as (C-3)
o

Here u and 6 are deviations away from the nominal u =0 , ¢ = 0. The

Hamiltonian for the accessory minimum problem is
Bo= 2f?- 6?4+ (C-4)

and the Euler-Lagrange equations are

dx
a—‘; = —He s )\(q’l) =V (€-5)
Hu = () =mip y= -} (C-6)

where V 1is a Lagrange multiplier on the terminal constraint e(¢1) = 0,
The Riccati transformation of (36) is used to relate XA to 6 in

developing the feedback law. Here for fx =0 ,f =1 ,H = -1,

u 66
Heu =0, Huu = +1, the sweep variables are determined from (32)
ds 2
dR
3 = SR s R(;) =1 (c-8)
dQ _ g? . - -
P R ; Q§¢l) 0 (c-9)

The solutions in the interval 0 < ¢; - ¢ < n/2 are easily obtained:

S = -tan(¢l-¢) (C-10)
R = sec(¢1-¢) (C-11)
Q = —tan(¢l—¢) (C-12)

Note that as ¢1 -¢+m/2, S and Q go to «. This value of S corresponds
to a problem where ¢1 is fixed but 6(¢1) is free. S = = corresponds to

a conjugate point for the unconstrained problem. If S 1s transformed 8o
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that it relates to the fixed end point problem, 6(¢1) = 0,
§=5-RR = ctafp, - o] (c-13)

S, R, and Q do not exist for (b1-¢) > n/2, but S (propagated also by
(C~7)) exists in the interval O §_¢1 -¢ < where at (¢l—¢) = 0,

S+ =, Note § + = as ¢1 - ¢ + n, so the latter is a conjugate point
for the constrained problem. From the point ¢ =0 , 8 = 0 to ¢ = w,

8 = 0 there are an infinite number of great circles which all give the
same value of the performance index. Using the Riccati transform and (C-6)

the neighboring optimal feedback law is

The feedback gain, -§(¢), is negative between 0 <6 -¢ < n/2 and
positive between w/2 2 ¢, - ¢ < m. For values of ¢ ¢ > the nominal
path is not a minimizing path,

Consider a variation from the equatorial nominal path to the point
A shown in Fig. 12. The optimum path from A to the terminal point
(6 =0, ¢ =n) diverges from the nominal path until ¢ = n/2, then
converges to the nominal path as ¢ + n., Consider an airplane flying
eastward along the equator to a destination on the equator. If a disturbance
moves the airplane north of the equator when there is more than 90° to go
to its destination, it should change its flight path to slightly north of
eagst (positive feedback). If there were less than 90° to go, it should
change its flight path to slightly south of east (negative feedback). Using
the feedback law of (C-14), a control is found initially which forces the

neighboring path further from the nominal path. The slope of the neighboring

path in the direction away from the nominal is an effort to minimize the
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performance index. This corresponds to positive feedback in (C-14).
However, after the median ¢ = /2 1is reached, the slope of the neighboring
path is directed toward the nominal in an effort to meet the terminal con-
straint,

Observing that H,_ = -1 in (C-3), it seems possible that increasing

66

6 might minimize 62J. In fact, a necessary condition for the existence

of a conjugate point is that Hee < 0.

The following similarities between this simple problem and the re-
entry problem are: (a) The feedback gains tabulated in Fig. 4 become
' -1
positive at the beginning of the flight; (b) -C = H o~ quHuuHux of (32)

was not semi-negative definite [5] (here the performance index is to be

maximized), and (c) the sweep variable S became unbounded along the optimal

trajectory for the constrained problem. The latter means that along this
path there is a conjugate point for the problem maximizing velocity with no
terminal constraints. These same things also occurred for the nominal

trajectory of Ref. [L].
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RE-ENTRY EXAMPLE PROBLEM.
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FIG. 5 TRAJECTORIES GENERATED BY MODIFIED NEIGHBORING
OPTIMUM CONTROL SCHEME DUE TO INITIAL ALTITUDE
PERTURBATIONS.
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FIG. 6  ANGLE-OF-ATTACK PROGRAMS FOR NOMINAL PATH
OF A RE-ENTRY VEHICLE AND TWO PERTURBED PATHS .
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O -—— CONTROL SCHEME BASED

ON TIME -T0-60
O —-—CONTROL SCHEME BASED

ON CLOCK TIME. 40,000+

T
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15T ORDER
APPROXIMATION

| |

-10,000 - 3,000
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FIG. 11 TERMINAL VELOCITY COMPARISON OF CONTROL SCHEMES BASED ON TIME-TO-GO AND CLOCK
TIME FOR INITIAL VELOCITY PERTURBATIONS.
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